img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (5): 669-677.doi: 10.11872/j.issn.1005-2518.2020.05.106

• 绿色胶凝材料专栏 • 上一篇    下一篇

基于铜镍冶炼渣制备充填胶凝材料试验研究

张雷1,2(),郭利杰1,2(),李文臣1,2   

  1. 1.矿冶科技集团有限公司,北京 100160
    2.国家金属矿绿色开采国际联合研究中心,北京 102628
  • 收稿日期:2020-06-12 修回日期:2020-07-05 出版日期:2020-10-31 发布日期:2020-11-05
  • 通讯作者: 郭利杰 E-mail:zhanglei3465@163.com;ljguo264@126.com
  • 作者简介:张雷(1994-),男,甘肃定西人,工程师,从事充填胶凝材料和矿冶固废资源化利用方面的研究工作。zhanglei3465@163.com
  • 基金资助:
    国家重点研发计划项目“基于有色冶炼渣的绿色充填胶凝材料制备及其性能合作研究”(2017YFE0107000)

Experimental Study on Preparation of Filling Cementitious Materials Based on Copper-Nickel Smelting Slag

Lei ZHANG1,2(),Lijie GUO1,2(),Wenchen LI1,2   

  1. 1.BGRIMM Technology Group,Beijing 100160,China
    2.National Centre for International Research on Green Metal Mining,Beijing 102628,China
  • Received:2020-06-12 Revised:2020-07-05 Online:2020-10-31 Published:2020-11-05
  • Contact: Lijie GUO E-mail:zhanglei3465@163.com;ljguo264@126.com

摘要:

为研究铜镍冶炼渣制备充填材料实现大规模消纳利用的可行性,将冶炼渣粉磨至不同的细度,开展了基于不同粉磨时间、冶炼渣掺量及激发剂掺量条件下的正交试验,制备充填试件,研究各因素对充填体单轴抗压强度的影响规律,并采用SEM图谱对其水化产物进行分析。研究表明:采用铜镍冶炼渣制备充填胶凝材料的最佳粉磨时间为50 min,对应的D(0.1)、D(0.5)和D(0.9)分别为4 μm、29 μm和120 μm。铜镍冶炼渣在水泥—戈壁集料体系中能够发生火山灰反应,对胶结充填体后期强度有一定的提升作用。通过分析SEM图谱进一步发现,铜镍冶炼渣的掺入能够促进体系后期钙矾石和水化硅酸钙(C-S-H)的生成。正交试验结果表明:铜镍冶炼渣—水泥比例为2∶8,激发剂掺量为4%,胶结充填体单轴抗压强度最高。

关键词: 铜镍冶炼渣, 碱激发, 机械粉磨, 正交试验, 胶结充填, 戈壁集料

Abstract:

The copper nickel smelting slag is mainly the pyrometallurgical smelting slag discharged from the copper nickel ore in the smelting process.Its main elements are iron and silicon,with contents of about 40% and 30% respectively.Generally,the disposal of copper and nickel smelting slag is mainly stacking and landfill,which wastes land resources and pollutes the environment at the same time,so the comprehensive utilization rate is low.It has been shown that the copper nickel smelting slag has certain pozzolanic activity,and it is feasible to prepare filling cementitious materials with it.In this paper,copper and nickel smelting slag were ground to different fineness,cement mixed with smelting slag was used as cementitious material,Gobi aggregate was used as aggregate,and orthogonal test was carried out to prepare cementitious filler based on different grinding time,slag content and activator content of smelting slag.By measuring the uniaxial compressive strength of cemented backfill at different ages,the influence rule and mechanism of various factors on the compressive strength of cemented backfill were studied,and the final hydration products were qualitatively analyzed by SEM.The results show that with the increase of grinding time,the uniaxial compressive strength of cemented backfill increases at first and then decreases.The optimal grinding time is 50 min,corresponding to D(0.1),D(0.5) and D(0.9) of 4 μm,29 μm and 120 μm respectively.The addition of smelting slag reduces the uniaxial compressive strength of cemented backfill,but the reduction of compressive strength of backfill in the later period of maintenance is lower than that in the early period.The pozzolanic reaction of copper nickel smelting slag in cement Gobi aggregate system can promote the compressive strength of cemented backfill.SEM images show that the addition of Cu-Ni slag can promote the formation of ettringite and calcium silicate hydrate (C-S-H).The influence of activator on the uniaxial compressive strength of cemented backfill is not obvious.The results of orthogonal test show that the content of Cu-Ni smelting slag has the greatest influence on the uniaxial compressive strength of cemented backfill, the second is the content of activator,and the least is the grinding time.Using copper nickel smelting slag with grinding time of 50 minutes,the ratio of the slag to cement is 2∶8,the content of activator is 4%,and the uniaxial compressive strength of cemented backfill is the highest.

Key words: copper-nickel smelting slag, alkali activation, mechanical grinding, orthogonal test, cemented filling, Gobi aggregate

中图分类号: 

  • TD853

表1

原材料化学组成"

材料名称CaOSiO2Al2O3MgOTFeMnOP2O5K2ONa2OSO3CTiO2
铜镍冶炼渣2.2034.603.205.3050.20-0.080.300.600.600.03-
水泥62.5620.774.402.903.15--0.580.602.80--

图1

铜镍冶炼渣矿物组成"

图2

铜镍冶炼渣粒径分布"

图3

不同粉磨时间冶炼渣粒径分布"

表2

冶炼渣粒径分布随粉磨时间的变化"

粉磨时间/minD(0.1)D(0.5)D(0.9)
40748164
50429120
603.42390

图4

戈壁集料粒径分布"

表3

试验方案的因素水平表"

因素水平A粉磨时间/minB冶炼渣/%C激发剂/%
140202
250304
360406

表4

正交试验配比方案明细表"

编号A粉磨时间B冶炼渣C激发剂A粉磨时间/ minB冶炼渣/%C激发剂/%
1#11140202
2#12240304
3#13340406
4#11250204
5#12350306
6#13150402
7#11360206
8#12160302
9#13260404

图5

不同养护龄期充填体试块抗压强度"

图6

戈壁集料胶结充填体SEM结果"

表5

权重分析计算表"

编号ABC试验结果y
1#1113.53
2#1222.17
3#1331.93
4#1123.68
5#1232.59
6#1313.12
7#1133.27
8#1213.50
9#1322.30
K17.6310.4810.15
K29.398.268.15
K39.077.357.79
ˉk12.543.493.38
ˉk23.132.752.72
ˉk33.022.452.60
极差R0.591.040.78

图7

不同水平均值图"

1 杨小聪,郭利杰.尾矿和废石综合利用技术[M].北京:化学工业出版社,2018.
Yang Xiaocong,Guo Lijie.Comprehensive Utilization Technology of Tailings and Waste Rock[M].Beijing:Che-mical Industry Press,2018.
2 刘长东,张晓丹,车贤,等.铜冶炼渣矿物学研究与资源化实践应用[J].中国资源综合利用,2020,38(2):18-23.
Liu Changdong,Zhang Xiaodan,Che Xian,et al.Mineralogical research and practical application of copper smelting slag [J].China Resource Comprehensive Utilization,2020,38(2):18-23.
3 李敦华.火法富集—湿法分离工艺从固废资源中回收锌及其他有价金属的探究[J].中国有色冶金,2020,49(1):8-12.
Li Dunhua.Study on recovery of zinc and other valuable metals from solid waste resources by fire enrichment wet separation process[J].China Nonferrous Metallurgy,2020,49(1):8-12.
4 韩雪.冶金行业含铁固体废弃物资源化综合利用研究[J].中国资源综合利用,2018,36(11):58-60.
Han Xue.Research on comprehensive utilization of iron-containing solid waste in metallurgical industry[J].China Resources Comprehensive Utilization,2018,36(11):58-60.
5 朱桂林,孙树杉,赵群,等.冶金渣资源化利用的现状和发展趋势[J].中国资源综合利用,2002(3):29-32.
Zhu Guilin,Sun Shushan,Zhao Qun,et al.Status and development trend of metallurgical slag resource utilization[J].China Resources Comprehensive Utilization,2002(3):29-32.
6 周千端.铜镍转炉渣的物质组成与综合利用初探[J].有色金属(冶炼部分),1980(5):14-21.
Zhou Qianduan.Preliminary study on the composition and comprehensive utilization of copper-nickel converter slag[J].Nonferrous Metals (Smelting Section),1980(5):14-21.
7 Pontikes Y,Machiels L,Onisei S,et al.Slags with a high Al and Fe content as precursors for inorganic polymers[J].Applied Clay Science,2013,73:93-102.
8 Ma Q M,Du H Y,Zhou X T,et al.Performance of copper slag contained mortars after exposure to elevated temperatures[J].Construction and Building Materials,2018,172:378-386.
9 Martauz P,Vojtěch V,Cvopa B.The properties of concrete based on steel slag as a by-product of metallurgical production[J].Key Engineering Materials,2020,838:10-22.
10 Zhang Y Y, Zhang S Q, Ni W,et al.Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials[J].Chemosphere,2019,223:117-123.
11 Isteri V,Ohenoja K,Hanein T,et al.Production and properties of ferrite-rich CSAB cement from metallurgical industry residues[J].Science of the Total Environment,2019:136208.
12 Singha J,Singh S P.Evaluating the alkali-silica reaction in alkali-activated copper slag mortars[J].Construction and Building Materials,2020,253:119189.
13 Nazer A,Paya J,Borrachero M V,et al.Use of ancient copper slags in Portland cement and alkali activated cement matrices[J].Journal of Environmental Management,2016,167:115-123.
14 朱街禄,宋军伟,王露,等.铜渣粉—水泥复合胶凝体系的水化热及动力学研究[J].建筑材料学报,2019..
Zhu Jielu,Song Junwei,Wang Lu,et al.Research on hydration heat and kinetics of copper slag powder-cement composite gelling system[J].Journal of Building Materials,2019..
15 宋军伟,刘松柏,周永祥,等.铜渣的粉磨特性及对水泥净浆强度的影响[J].江西建材,2020(4):12-13,16.
Song Junwei,Liu Songbai,Zhou Yongxiang,et al.Grinding characteristics of copper slag and its effect on cement paste strength [J].Jiangxi Building Materials,2020(4):12-13,16.
16 中华人民共和国国家质量监督检验检疫总局. 用于水泥和混凝土中的粒化高炉矿渣粉:GBT18046-2008[S]. 北京:中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China. Ground granulated blast furnace slag used for cement and concrete:GBT18046-2008[S]. Beijing: China Standard Press, 2008.
17 张思宇,黄少文.火山灰活性评价方法及其影响因素[J].材料导报,2011,25(15):104-106,113.
Zhang Siyu,Huang Shaowen.Volcanic ash activity evaluation method and its influencing factors[J].Materials He-rald,2011,25(15):104-106,113.
18 丁铸,王向东.偏高岭土火山灰活性的研究与利用[J].硅酸盐通报,1997,16(4):57-62,74.
Ding Zhu,Wang Xiangdong.Research and utilization of metakaolin volcanic ash activity[J].Bulletin of Silicates,1997,16(4):57-62,74.
19 Le H T,Ludwig H M.Alkali silica reactivity of rice husk ash in cement paste[J].Construction and Building Materials,2020,243:118145.
20 史采星,郭利杰,李文臣,等.铅锌冶炼渣充填胶凝材料研究及应用[J].黄金科学技术,2018,26(2):160-169.
Shi Caixing,Guo Lijie,Li Wenchen,et al.Research and application of lead-zinc smelting slag filling cementing materials[J].Gold Science and Technology,2018,26(2):160-169.
21 王生辉,刘荣进,陈平,等.铅锌尾矿和冶炼渣双掺制备复合水泥的试验研究[J].水泥工程,2020(1):21-24.
Wang Shenghui,Liu Rongjin,Chen Ping,et al.Experimental study on the preparation of composite cement by mixing lead-zinc tailings and smelting slag[J].Cement Engineering,2020(1):21-24.
22 Nadège D,Sonois-Mazars V,Albina P,et al.Nitrate and nitrite reduction activity of activated sludge microcosm in a highly alkaline environment with solid cementitious material[J].International Biodeterioration & Biodegradation,2020,151:104971.
23 李茂辉,陈志杰.某低活性酸性矿渣微粉的机械力化学效应研究[J].金属矿山,2019,48(3):200-203.
Li Maohui,Chen Zhijie.Study on the mechanochemical effect of a low activity acid slag powder[J].Metal Mine,2019,48(3):200-203.
24 侯双明,高嵩,张蕾,等.热活化和机械活化对拜耳法赤泥性能影响[J].硅酸盐通报,2020,39(5):1573-1577.
Hou Shuangming,Gao Song,Zhang Lei,et al.Effect of thermal activation and mechanical activation on properties of Bayer red mud [J].Silicate Bulletin,2020,39(5):1573-1577.
25 Singh J,Singh S P.Development of alkali-activated cementitious material using copper slag[J].Construction and Building Materials,2019,211:73-79.
26 Saha A K,Sarker P K.Effect of sulphate exposure on mortar consisting of ferronickel slag aggregate and supplementary cementitious materials[J].Journal of Building Engineering,2019,28:101012.
27 Koohmishi M,Azarhoosh A.Assessment of drainage and filtration of sub-ballast course considering effect of aggregate gradation and subgrade condition[J].Transportation Geotechnics,2020,24:100378.
[1] 张婷婷,周子钰,郭利杰,武震林,韩俊南. 矿物掺合料改性铜镍渣胶凝材料的性能研究[J]. 黄金科学技术, 2020, 28(5): 678-687.
[2] 宋春辉, 李祥龙, 王建国, 宋飞. 矿柱爆破回采对胶结充填体损伤影响试验研究[J]. 黄金科学技术, 2020, 28(4): 558-564.
[3] 黄照东,张德明,刘一锴,张钦礼,王浩. 柠檬酸浸法预处理对磷石膏充填体性能的影响[J]. 黄金科学技术, 2020, 28(1): 97-104.
[4] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[5] 梁昌金, 马传净. 碘—氨浸出体系用于废旧印刷线路板中金的浸取[J]. 黄金科学技术, 2019, 27(5): 784-790.
[6] 徐文峰,饶运章,李尚辉,许威. 含膨润土充填料浆泌水特性分析[J]. 黄金科学技术, 2019, 27(3): 433-439.
[7] 叶永飞,张雅楠,李士超,曹世荣,韩建文,王晓军. 循环载荷下胶结充填体损伤声发射表征[J]. 黄金科学技术, 2018, 26(6): 819-825.
[8] 蓝志鹏,王新民,张钦礼,陈秋松. 磁化水对膏体料浆管道输送摩阻损失影响试验研究[J]. 黄金科学技术, 2018, 26(6): 811-818.
[9] 李夕兵,刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术, 2018, 26(4): 492-502.
[10] 李文臣,郭利杰,陈鑫政,李宗楠,李欣. 尾砂胶结充填体三维空间强度分布相似模拟试验研究[J]. 黄金科学技术, 2018, 26(4): 528-534.
[11] 王新民, 赵茂阳, 荣帅, 王浩, 张云海. APAM对全尾砂胶结充填体早期强度影响研究[J]. 黄金科学技术, 2018, 26(3): 305-311.
[12] 曹世荣,韩建文,李永欣,王晓军 *,冯萧,卓毓龙. 基于声发射概率密度函数固废胶结充填体损伤分析[J]. 黄金科学技术, 2017, 25(6): 92-98.
[13] 曹世荣,肖伟晶,李永欣,王晓军,卓毓龙,冯萧. 循环载荷下块石胶结充填体声发射特性研究[J]. 黄金科学技术, 2017, 25(3): 92-97.
[14] 王新民,胡一波,王石,刘吉祥,陈宇,卞继伟. 超细全尾砂充填配比优化正交试验研究[J]. 黄金科学技术, 2015, 23(3): 45-49.
[15] 戴兴国,方鑫,陈增剑,黄毅. 良山铁矿全尾砂胶结充填参数的合理选择[J]. 黄金科学技术, 2015, 23(1): 74-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 叶智远, 王倩倩. 铝硅酸盐固废胶凝材料制备及其性能[J]. 黄金科学技术, 2020, 28(5): 658 -668 .
[2] 张婷婷,周子钰,郭利杰,武震林,韩俊南. 矿物掺合料改性铜镍渣胶凝材料的性能研究[J]. 黄金科学技术, 2020, 28(5): 678 -687 .