img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (1): 33-40.doi: 10.11872/j.issn.1005-2518.2019.01.033

• • 上一篇    下一篇

CSAMT方法在仓上金矿外围及深部找矿中的应用

冯欣欣,董晴晴   

  1. 1. 山东黄金地质矿产勘查有限公司,山东 莱州 261400
  • 收稿日期:2018-05-08 修回日期:2018-09-06 出版日期:2019-02-28 发布日期:2019-03-19
  • 作者简介:冯欣欣(1982-),男,河南焦作人,工程师,从事地球物理勘查工作。44677037@qq.com

Application of CSAMT Method in Depth and Peripheral Prospecting of Cangshang Gold Deposit

Xinxin FENG,Qingqing DONG   

  1. 1. Shandong Gold Geology and Mineral Resources Co. ,Ltd. ,Laizhou 261400,Shandong,China
  • Received:2018-05-08 Revised:2018-09-06 Online:2019-02-28 Published:2019-03-19

摘要:

仓上金矿位于三山岛—仓上断裂西南部,西邻渤海湾,是我国大型露天金矿之一。至2005年闭坑后,在矿山外围及深部找矿一直未取得新进展。为加大勘探深度,探查矿区外围和深部断裂及岩体的空间展布情况,寻找深部金矿资源,采用CSAMT方法在该区开展了测深剖面勘查工作,并与以往的物探资料及331号地质剖面进行了综合对比分析,结果显示F1推断断层与三山岛—仓上断裂相吻合,提出验证钻孔1个。经钻探工程验证见金矿体,取得了较好的应用找矿效果,为下一步开展地质找矿提供了有价值的地球物理信息依据。

关键词: CSAMT, 金矿体, 地球物理信息, 深部找矿, 仓上金矿, 三山岛—仓上断裂

Abstract:

There are abundant gold resources in Jiaodong area, which are mainly controlled by Sanshandao-Cangshang fault, Jiaojia fault and Zhaoping fault.Three major gold metallogenic belts were formed in the area, where several large and super-large gold deposits have been found. Jiaodong area has provided a large amount of gold reserves, and it’s an significant gold concentration area and gold industrial base in China.The main research area in this paper is Cangshang gold deposit,which located in southwest of Sanshandao-Cangshang fault that adjacent to the Bohai Bay.It is one of the large open-air gold deposit in China. Since Cangshang gold deposit closure in 2005,Shandong Gold Group,many geological exploration agencies and scientific research institutes have conducted a lot of prospecting work around the mine,but no new progress has been made in prospecting.In order to find out the spatial distribution of the fault and rock mass in the depth and periphery of the mining area,and search for deep gold resources, geophysical exploration method was used to conduct deep exploration in the area,and the conventional electrical and magnetic exploration was compared with CSAMT (Controlled Source Audio-Frequency Magnetotellurics).The conventional electric and magnetic exploration is difficult to meet the needs of exploration because the the depth of conventional electric and magnetic exploration is relatively shallow,and the results are reflected on the plane.CSAMT was choose to conduct deep profile exploration in the area.Field construction was carried out in the northern part of the mining area, and two CSAMT sounding sections were arranged along the vertical direction of the Cangshang fault,numbered L4000 and L4300. The length of L4000 section was 1 440 m,and L4300 section was 1 160 m,line distance was 300 m,point distance was 40 m and azimuth angle was 120°.The emission dipole sources AB were arranged in parallel lines in the northeast.The dipole distance of AB was 1.2 km, the receiving dipole distance of MN was 40 m,the receiving and transmitting distance was 5 km, and the detection depth was 1 km.The frequency acquisition range was 1~7 680 Hz,with a total of 40 frequency points.In order to ensure the quality of data acquisition and reduce human interference,a 21 KAV high-power generator was used for power supply.The low frequency current (1 Hz) was not less than 18 A,the high frequency current (7 680 Hz) was not less than 5 A,and the current at intermediate frequency was decreasing.Data processing and inversion were carried out by using software CMTPro and CSAMT-SW V3.0.The data processing included data preprocessing,trip point removal,near-field source correction,static correction and two-dimensional joint inversion.Finally,a map was drawn and the inversion results were compared and analyzed comprehensively with previous geophysical prospecting data and geological profile 331.The inversion results of CSAMT showed that the resistivity characteristics of strata and rock mass were basically consistent with those of conventional electrical methods, and the inferred fault F1 was consistent with Sanshandao-Cangshang fault,indicating that this method has good application effect in this area.In order to verify the low-resistance abnormal zone (F1 fault),a verification borehole was deployed at the corresponding surface location.Through the verification of drilling project,fault mud,weak sericitization granite cataclastic rocks,cataclastic granite rocks and sericitization granite cataclastic rocks were found at the depth of 776.25 ~829.70 m,corresponding to the low-resistance abnormal zone (F1 fault).Gold orebodies were found in sericitization granitic cataclastic rocks,the highest grade is 7.30×10-6 after assay.In summary,good prospecting results are achieved while applying to the field geological exploration work,and will provide valuable geophysical information basis for further geological prospecting.

Key words: CSAMT, gold orebody, geophysical information, deep prospecting, Cangshang gold deposit, Sanshandao-Cangshang fault

中图分类号: 

  • P618.51

图1

三山岛—仓上断裂带地质简图[6]"

图2

仓上金矿北部?T平面等值线图"

图3

仓上金矿北部视电阻率平面等值线图"

图4

CSMAT发射及观测系统布置图"

表1

莱州北部地区物性统计"

岩性标本数/个电阻率ρ/(Ω·m)
平均值变化范围
斜长角闪岩5232893~749
二长花岗岩96810490~1 167
绢英岩化花岗质碎裂岩741 200335~8 180
黄铁绢英岩化糜棱岩3086.941.5~209
第四系(砂土层)196030~90

图5

CSAMT测点位置及推断成果图"

图6

CSAMT电阻率反演剖面与331号勘探线地质剖面对比图"

表2

ZK319-1钻孔分层情况及岩性"

序号分层情况岩性
分层范围/m层厚/m
10.00~41.0041.00第四系海积砂及海泥
241.00~52.7011.70变辉长岩
352.70~767.20714.40混合岩化变辉长岩
4767.20~776.259.05碎裂状二长花岗岩
5776.25~776.450.20断层泥
6776.45~783.256.80弱绢英岩化花岗碎裂岩
7783.25~809.9026.65碎裂状花岗岩
8809.90~829.7019.80绢英岩化花岗质碎裂岩
9829.70~850.7021.00二长花岗岩

表3

ZK319-1钻孔采样化验分析结果"

序号样品编号采样位置/m样长/mw(Au)/(×10-6
1H13778.65~779.851.200.63
2H15781.05~782.251.201.53
3H26818.60~819.801.201.53
4H27819.80~821.001.200.10
5H28821.00~822.201.207.30

表4

仓北地区物探方法应用效果"

物探方法地球物理特征应用效果
上盘(变质岩)仓上断裂下盘(花岗岩)
高精度磁测高磁特征条带状低磁带低磁特征不受海滨砂土地影响,成果主要反映在平面上,地球物理特征与地质吻合,应用效果较好,但探测深度较浅
常规电法(激电中梯面积测量)低阻特征电阻率梯度带高阻特征受海滨砂土地影响较小,成果主要反映在平面上,地球物理特征与地质吻合,应用效果较好,但探测深度较浅
CSAMT测量-400 m以浅为中低阻特征,以深为中高阻特征电阻率梯度带及条带状低阻区高阻特征受海滨砂土地影响较小,成果主要反映在垂向上,不同深度地层及岩体的地球物理特征,与地质相吻合,应用效果较好,且探测深度较深,可达2 000 m
1 王光杰,王勇,李帝铨,等.基于遗传算法CSAMT反演计算研究[J].地球物理学进展,2006,21(4):1285-1289.
WangGuangjie,WangYong,LiDiquan,et al.The application of genetic algorithm to CSAMT inversion[J].Progress in Geophysics,2006,21(4):1285-1289.
2 喻春,陈永凌,李建忠,等.可控源音频大地电磁法在高楼山金矿深部找矿中的应用[J].黄金科学技术,2016,24(1):59-63.
YuChun,ChenYongling,LiJianzhong,et al.Application of CSAMT to deep mine prospecting in the Gaoloushan gold mine[J].Gold Science and Technology,2016,24(1):59-63.
3 杨炳南,周琦,杜远生,等.音频大地电磁法对深部隐伏构造的识别与应用:以贵州省松桃县李家湾锰矿为例[J].地质科技情报,2015,34(6):26-32.
YangBingnan,ZhouQi,DuYuansheng,et al.Identification and application of audio magnetotellurics to the deep buried structure:A case study of Lijiawan manganese deposit at Songtao County in Guizhou Province[J].Geological Science and Technology Information,2015,34(6):26-32.
4 郑振云,轩慎英,郑洁,等.可控源音频大地电磁测深法在甘肃寨上金矿区的找矿应用研究[J].黄金科学技术,2017,25(2):7-13.
ZhengZhenyun,XuanShenying,ZhengJie,et al.Application of controlled source audio magnetotelluric sounding method in prospecting of Zhaishang gold mine,Gansu Province[J].Gold Science and Technology,2017,25(2):7-13.
5 龚飞,底青云,王光杰,等.CSAMT方法对虎跳峡龙蟠右岸变形体的反应特征[J].工程地质学报,2005,13(4):542-545.
GongFei,DiQingyun,WangGuangjie,et al.CSAMT method for exploration of deformation bodies in Longpan area[J].Journal of Engineering Geology,2005,13(4):542-545.
6 李冰,晁代超,魏明君,等.电磁测深技术在深部铁矿探测中的应用研究——以河南舞阳铁矿区为例[J].中国地质,2013,40(5):1644-1654.
LiBing,ChaoDaichao,WeiMingjun,et al.The application of electromagnetic sounding method to deep iron ore exploration:A case study of the Wuyang iron mining area of Henan[J].Geology in China,2013,40(5):1644-1654.
7 王振军,李伟明,原波.山东三山岛—新立—仓上金矿床构造叠加晕特征浅析[J].黄金科学技术,2013,21(4):48-53.
WangZhenjun,LiWeiming,YuanBo.Features of structural superimposed halos in Sanshandao-Xinli-Cangshang gold deposits,Shandong Province[J].Gold Science and Technology,2013,21(4):48-53.
8 宋明春,张军进,张丕建,等.胶东三山岛北部海域超大型金矿床的发现及其构造—岩浆背景[J].地质学报,2015,89(2):365-383.
SongMingchun,ZhangJunjin,ZhangPijian,et al.Discovery and tectonic-magmatic background of superlarge gold deposit in offshore of northern Sanshandao,Shandong Peninsula,China[J].Acta Geologica Sinica,2015,89(2):365-383.
9 王友芳,孙世福,张荣敏,等.山东省莱州市仓上金矿北部含金破碎蚀变带物探普查成果报告[R].济南:山东省物化探勘查院,2003.
WangYoufang,SunShifu,ZhangRongmin,et al.Results of geophysical survey of gold bearing fragmentation alteration zone in northern Cangshang gold deposit,Laizhou,Shandong[R].Jinan:Shandong Institute of Geophysical and Geochemical Exploration,2003.
10 董坤,薄杨.V8工作站CSAMT勘探成果三维可视化研究[J].赤峰学院学报(自然科学版),2013,29(5):44-46.
DongKun,BoYang.Research on 3D visualization of CSAMT exploration results of V8 workstation[J].Journal of Chifeng University(Natural Science Edition),2013,29(5):44-46.
11 王若,王妙月,底青云,等.CSAMT三维单分量有限元正演[J].地球物理学进展,2014,29(2):839-845.
WangRuo,WangMiaoyue,DiQingyun,et al.3DIC CSAMT modeling using finite element method[J].Progress in Geophysics,2014,29(2):839-845.
12 段文旭,肖宏跃,刘垒,等.CSAMT方法在铁矿勘探中的应用[J].物探化探计算技术,2014,36(2):190-193.
DuanWenxu,XiaoHongyue,LiuLei,et al.Application of the CSAMT in iron mine exploration[J].Computing Techniques for Geophysical and Geochemical Exploration,2014,36(2):190-193.
13 底青云,王妙月,石昆法,等.高分辨V6系统在矿山顶板涌水隐患中的应用研究[J].地球物理学报,2002,45(5):744-748.
DiQingyun,WangMiaoyue,ShiKunfa,et al.An applied study on prevention of water bursting disaster in mines with the high resolution V6 system[J].Chinese Journal of Geophysics,2002,45(5):744-748.
14 夏训银,王身龙,王洪生,等.CSAMT方法在铁路隧道勘探中的应用[J].勘察科学技术,2006(4):61-64.
XiaXunyin,WangShenlong,WangHongsheng,et al.Application of CSAMT to exploration of railway tunnel[J].Site Investigation Science and Technology,2006(4):61-64.
15 董晴晴,冯欣欣.AMT方法在深部断裂构造识别中的应用——以南吕—欣木金矿区为例[J].山东国土资源,2016,32(10):48-51.
DongQingqing,FengXinxin.Application of AMT technology in identifying deep fault structures——setting Nanlü-Xinmu gold mine as an example[J]. Shandong Land and Resources,2016,32(10):48-51.
16 韦乖强,赵慧,赵秀玲,等.CSAMT在隐伏地质构造勘查中的三维可视化应用[J].山东国土资源,2015,31(4):56-58.
WeiGuaiqiang,ZhaoHui,ZhaoXiuling,et al.Application of three-dimensional visualization of CSAMT in exploring concealed geological structures[J].Shandong Land and Resources,2015,31(4):56-58.
17 于昌明.CSAMT方法在寻找隐伏金矿中的应用[J].地球物理学报,1998,41(1):133-138.
YuChangming.The application of CSAMT method in looking for hidden gold mine[J].Acta Geophysica Sinica,1998,41(1):133-138.
[1] 刘国栋,温桂军,刘彩杰,鲍中义*,孙忠全,范家盟,李山,闫春明,郭志峰. 招平断裂北段水旺庄深部超大型金矿床的发现、特征和找矿方向[J]. 黄金科学技术, 2017, 25(3): 38-45.
[2] 宋国政,闫春明,曹佳,郭志峰,鲍中义,刘国栋,李山,范家盟,刘彩杰. 胶东焦家成矿带超千米深部金矿勘查突破及意义——以纱岭矿区为例[J]. 黄金科学技术, 2017, 25(3): 19-27.
[3] 宋英昕,宋明春,丁正江,魏绪峰,徐韶辉,李杰,谭现峰,李世勇,张照录, 焦秀美,胡弘,曹佳. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4-18.
[4] 万鹏,丁正江,胡弘,吴凤萍,程蓉蓉,邹键 . 胶东邓格庄金矿床深部成矿特征及找矿方法组合[J]. 黄金科学技术, 2017, 25(3): 46-53.
[5] 宋英昕. 胶东三山岛北部海域金矿床蚀变矿物短波红外光谱特征及其对深部找矿的启示[J]. 黄金科学技术, 2017, 25(3): 54-60.
[6] 李惠,禹斌,马久菊,李德亮,孙凤舟,李永才,阮怡箫,魏江,赵佳祥,王俊,王一大,李上,魏子鑫. 构造叠加晕找盲矿法的先进性及典型案例[J]. 黄金科学技术, 2016, 24(6): 15-23.
[7] 王春生,陈孝强,陈方博,樊战军 . CSAMT法在哈达门沟金矿中的应用[J]. 黄金科学技术, 2016, 24(3): 29-34.
[8] 喻春,陈永凌,李建忠,赵维新,谢丹. 可控源音频大地电磁法在高楼山金矿深部找矿中的应用[J]. 黄金科学技术, 2016, 24(1): 59-63.
[9] 王振军,李伟明,原波. 山东三山岛—新立—仓上金矿床构造叠加晕特征浅析[J]. 黄金科学技术, 2013, 21(4): 48-53.
[10] 刘金友,丁宪华,刘淑亮,李洪杰,顿美霞. CSAMT法在西涝口金矿勘查中的应用[J]. 黄金科学技术, 2013, 21(3): 16-20.
[11] 王恩敬,郭广军,赵荣欣,王彦伟,于晓杰,吕广耀,王伟涛. 山东寺庄金矿床构造—矿化网络结构研究及应用[J]. J4, 2012, 20(4): 76-80.
[12] 王营田,王山章,李波,韩宇. 山东大庄子金矿床1号脉成矿规律及深部探矿预测[J]. J4, 2012, 20(4): 123-127.
[13] 孔令芝,朱随洲,韩云松,张龙,储照波,李新年,吴海庆,杨桂彬,叶官威,信太岭,李军峰. 山东玲珑断裂带地球物理特征综合分析及找矿预测[J]. J4, 2012, 20(4): 117-122.
[14] 贾兴杰,李怀乾,郑洪举. 河南舞钢铁矿地质特征及深部找矿研究[J]. J4, 2012, 20(2): 25-31.
[15] 国兴伟,张洪波,高鹏为,刘峰基,王炳勤. 沂南金矿矽卡岩型多金属矿床成矿规律及深部找矿预测[J]. J4, 2010, 18(5): 31-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!